p. 176

Exercise 61

1 Calculate the value of S_{12} for each geometric series.

a
$$0.5 + 1.5 + 4.5 + \cdots$$
 b $0.3 + 0.6 + 1.2 + \cdots$

b
$$0.3 + 0.6 + 1.2 + \cdots$$

c
$$64 - 32 + 16 - 8 + \cdots$$

c
$$64-32+16-8+\cdots$$
 d $(x+1)+(2x+2)+(4x+4)+\cdots$

2 Calculate the value of S_{20} for each series.

a
$$0.25 + 0.75 + 2.25 + \cdots$$
 b $\frac{16}{9} + \frac{8}{3} + 4 + \cdots$

b
$$\frac{16}{9} + \frac{8}{3} + 4 + \cdots$$

c
$$3-6+12-24+\cdots$$

c
$$3-6+12-24+\cdots$$
 d $\log a + \log(a^2) + \log(a^4) + \log(a^8) + \cdots$

: EXAM-STYLE QUESTION

3 For each geometric series:

i find the number of terms

ii calculate the sum

a
$$1024 + 1536 + 2304 + \cdots + 26244$$

b
$$2.7 + 10.8 + 43.2 + \cdots + 2764.8$$

c
$$\frac{125}{128} + \frac{25}{64} + \frac{5}{32} + \dots + \frac{1}{625}$$

d
$$590.49 + 196.83 + 65.61 + \cdots + 0.01$$

p. 178

Exercise 6J

1 For each series, determine the least value of *n* for which $S_n > 400$

a
$$25.6 + 38.4 + 57.6 + \cdots$$

b
$$14-42+126-378+\cdots$$

c
$$\frac{2}{3} + \frac{8}{9} + \frac{32}{27} + \cdots$$

2 A geometric series has third term 1.2 and eighth term 291.6 Find the common ratio and the value of S_{10} .

3 In a geometric series, $S_4 = 20$ and $S_7 = 546.5$ Find the common ratio, if r > 1

EXAM-STYLE QUESTION

4 a Find the common ratio for the geometric series $\frac{1}{12} + \frac{1}{8} + \frac{3}{16} + \cdots$

b Hence, find the least value of *n* such that $S_n > 800$

5 In a geometric series, the sum of the first three terms is 304, and the sum of the first 6 terms is 1330. Find the sum of the first seven terms.

6 In a geometric series, the sum of the first four terms is ten times the sum of the first two terms. If r > 1, find the common ratio.