3F cont...
(6)

Coin $\frac{1}{t}$ le sided die
$P(H$ and not le) obviously independent objects

$$
\begin{aligned}
\therefore & P(H) \times P(\text { not } 6) \\
& \frac{1}{2}=\frac{5}{6}=\frac{5}{12}
\end{aligned}
$$

(7) Each missle is independent of the previous one

$$
\begin{aligned}
& P(\text { hiltingterget })=\frac{8}{9} \\
\therefore & P(\text { missing target })=1-\frac{8}{9}=\frac{1}{9}
\end{aligned}
$$

P (missing target 5 times)

$$
\begin{aligned}
& =\frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} \cdot \frac{1}{9} \\
& =\frac{1}{59049}
\end{aligned}
$$

(8) 4 cards, w/replacrent \therefore independent

$$
\begin{aligned}
P(4 \text { hearts in a row }) & =\frac{13}{52} \cdot \frac{13}{52} \cdot \frac{13}{52} \cdot \frac{13}{52} \\
& =\frac{28561}{7311616}
\end{aligned}
$$

(9)
$u=1.0$

$$
\begin{aligned}
& P\left(E^{\prime}\right)=.6 \\
& .36+P(\text { neither })=.6 \\
& P(\text { neither })=.24 \\
& .24+.24+.36=1 \\
& \therefore P(E \text { only })=0
\end{aligned}
$$

a) $P(E)=.24$
*b)

$$
\begin{aligned}
& P(E) \times P(F) \stackrel{?}{=} P(E \cap F) \\
& .24 \times .6 \stackrel{?}{=} .24 \\
& .144 \stackrel{?}{=} .24
\end{aligned}
$$

$\therefore E$ and F are not inclependent
c) End I are not mutually exclusive $b / C P(E \cap F) \neq 0$
d)

$$
\begin{aligned}
P\left(E \cup F^{\prime}\right) & =.24+.24 \\
& =.48
\end{aligned}
$$

Probability Problem Set \#3

Exercise 3F
(1) 5shirts: 1 Blue 1 Brown 1 Red 1 white
I Black

2 shirts with Replacement
\therefore independent

$$
\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}
$$

(2) 52 cards: 2 cards w/ replacement \therefore independent

$$
\frac{4}{52} \cdot \frac{4}{52}=\frac{16}{2704}
$$

(3) Survey $\frac{4}{5}=$ pasta large school 3 selected wo no togaiven
replacement but
still independent b/e schools lane

$$
\frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5}=\frac{64}{125}
$$

(3) $P($ win cricket $)=.75$

$$
P(\text { win hockey })=.85
$$

"Assure independent"

$$
\begin{aligned}
& \text { Assure incite } \\
& P(\text { in both })=.75 \cdot .85 \\
&=.6375
\end{aligned}
$$

(5) A, B, C mutually exclusive

$$
\begin{aligned}
& P(A \cup B)=.4 \therefore P(B)=.2 \\
& .2+.2+.3=.7 \quad \therefore P(\text { none })=.3
\end{aligned}
$$

a) $P(B)=2 \quad P(B \cap C)=0$
b)

$$
\begin{aligned}
P(B \cup C) & =P(B)+P(C)-P(B \cap C) \\
.34 & =.2+.3-P(B \cap C) \\
.34 & =.5-P(B \cap C) \\
-.16 & =-P(B \cap C) \\
.16 & =P(B \cap C)
\end{aligned}
$$

Test for independence:

$$
\begin{gathered}
P(B \cap C) \stackrel{\text { for }}{=} P(B) \times P(C) \\
.16 \stackrel{?}{=} .2 \times .3 \\
.16=.06
\end{gathered}
$$

no \therefore Banc are not independent
or

$$
\begin{gathered}
P(B \mid C) \stackrel{?}{=} P(B) \\
\frac{P(B \cap C)}{P(C)}=P(B) \\
\frac{.16}{.3}=.2 \\
n_{0}
\end{gathered}
$$

$3 F$ cont
(10)

$$
\begin{aligned}
& 3 \text { bags, each have } 4 \text { Red } \\
& 8 \text { Blue } \\
& P(R, B, R) \\
& \text { separate bags } \therefore \text { independent } \\
& P(R) \times P(B) \times P(R) \\
& \frac{4}{12} \times \frac{8}{12} \times \frac{4}{12}=\frac{128}{1728}
\end{aligned}
$$

(11) 6 sided die

$$
1,2,2,5,6,6
$$

3 rolls \therefore inclependent $P($ scores add up to 6$)$
the only way to get 6 is 2,2,2

$$
\begin{aligned}
& \therefore P(2) \times P(2) \times P(2) \\
& =\frac{2}{6} \times \frac{2}{6} \times \frac{2}{6} \\
& =\frac{8}{216}
\end{aligned}
$$

(12) u

A and B are inclpendert"

a)

$$
\begin{aligned}
P(A \cap B) & =P(A) \times P(B) \\
& =27
\end{aligned}
$$

b)

$$
\begin{aligned}
.3-.27 & =.03 \\
.9-.27 & =.63 \\
.63+.27+.03 & =.93 \\
1-.93 & =.07
\end{aligned}
$$

$$
P\left(A \cap B^{\prime}\right)=63
$$

P(A only)
c)

$$
\begin{aligned}
& P(A \cup B)^{\prime}=.07 \\
& P(\text { neither })
\end{aligned}
$$

