Problem Set \#10
(1) ${ }_{a}{ }^{15 K}(z<a)=0,922$

b) $P(z>a)=0.342$

$$
\Rightarrow p(z<a)=0.658
$$

$$
\text { c) } \begin{aligned}
P(z>a) & =0.005 \\
\Rightarrow P(Z<a) & =0.995
\end{aligned}
$$

(4) a)

$$
\begin{array}{r}
P(z<a)=.95 \\
a=1.64
\end{array}
$$

b)

$15 L$
(1)

$$
x \sim N\left(5.5,0.2^{2}\right)
$$

$$
\begin{array}{r}
-.0144495811=a-5.5 \\
\frac{5.49=a}{(356)}
\end{array}
$$

type this in $\omega / \mu=5,5$ and

$$
\begin{gathered}
\quad \sigma=0.2 \text { but practice } w / z \\
\rightarrow \quad P(z<b)=0.235 \\
=\frac{a-5.5}{0.2}
\end{gathered}
$$

I know you can just Hie

$$
P(x>a)=0.235 \rightarrow P(z<b)=0.235
$$

$$
z=\frac{x-\mu}{\sigma} \Rightarrow-.722479=\frac{a-5.5}{0.2}
$$

15 L cont...
(2) $M \sim N\left(420,10^{2}\right) \quad 25^{\text {th percentile }}$
a) Find first quartile V

$$
z=\frac{x-\mu}{\sigma}
$$

b) Find $90^{\text {th }}$ Percentic

$$
\begin{array}{rl}
P(z<b)=.9 & 1.28155=\frac{a-420}{10} \\
b \approx 1.28155 & 12.8155=a-420 \\
& 432.8155=a \\
& 433 \approx a \operatorname{c3SA}
\end{array}
$$

(3) $x \sim N\left(502,1.6^{2}\right)$
a)

$$
\begin{aligned}
& P(x<500) \\
& Z=\frac{500-502}{1.6} \\
& Z=-1.25
\end{aligned} \rightarrow P(z<-1.25) \approx .106(35 A)
$$

b) $P(500<x<505)=P(x<505)-P(x<500)$

$$
=.9696-.1056
$$

$$
\approx .864(356)
$$

$500500 \quad 505$

* treat like a shaded region area problem

$$
\begin{aligned}
& P(z<b)=0.25 \\
& b=-.6744897 \\
& -.6744897=\frac{a-420}{10} \\
& -6.744897=a-420 \\
& 413 \approx a \text { (35f) }
\end{aligned}
$$

15L cont....
(3) c)

$$
\begin{aligned}
& P(x<b)=.975 \\
& b=505.1359424 \\
& a=499 \quad b=505 \\
& 3 \mathrm{ff}
\end{aligned}
$$

$$
b-502=3.14
$$

$$
502-3.14=498.9
$$

15 m
(1)

$$
\begin{aligned}
& x \sim N\left(30, \sigma^{2}\right) P(x>40)=0.115 \text { find } \sigma \\
& \text { so, } P(x<40)=0.885 \\
& \Rightarrow P(Z<b)=0.885 \\
& b=1.20 \\
& Z=\frac{x-\mu}{\sigma} \\
& 1.20= \frac{40-30}{\sigma} \\
& 1.2 \sigma=10 \\
& \sigma=8.33(35 f)
\end{aligned}
$$

15 m cont...
(2)

$$
\begin{aligned}
& x \sim N\left(\mu, 4^{2}\right) \quad P(x \\
& Z=\frac{x-\mu}{\sigma} \\
& 1.28155=\frac{20.5-\mu}{4} \\
& 5.126=20.5-\mu \\
& \mu=15.4(35 \mathrm{f})
\end{aligned}
$$

$$
P(x<20.5)=0.9
$$

$$
P(z<b)=0.9
$$

$$
b=1,28155
$$

(3)

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right) \\
& \begin{array}{c}
P(x<58.39)=0.0217 \\
P(x<58.39)=0.9783 \\
P(z<b)=0.9783 \\
b \approx 2.0198
\end{array} \\
& z=\frac{x-\mu}{\sigma} \\
& Z=\frac{x-\mu}{\sigma} \\
& -1.9=\frac{41.82-\mu}{\sigma} \\
& 2.0198 \sigma=58.39-\mu \\
& -1,9 \sigma=41,82-\mu \\
& \mu=58.39-2.01980 \\
& \mu=41.82+1.9 \sigma \\
& 58.39-2.0198 \sigma=41.82+1.9 \sigma \\
& \begin{array}{l}
\mu=41.82+1.9(v) \\
\mu \approx 49.9(35 f)
\end{array} \\
& 16.57=3.91980 \\
& 4,23=\sigma
\end{aligned}
$$

15 m cont
(5)

$$
\begin{array}{rl}
\mu=136 & x \sim N\left(136, \sigma^{2}\right) \\
P(x>145)=.12 & \rightarrow \quad P(x<145)=.88 \\
\text { Find } \sigma & P(z<b)=.88 \\
b=1.174986791 \\
z=\frac{x-\mu}{\sigma} \\
1.174986791 & =\frac{145-136}{\sigma} \\
1.174986791 \sigma=9 \\
\sigma \approx 7.66(356)
\end{array}
$$

(7) $x \sim N\left(0.85,0^{2}\right)$

$$
\begin{aligned}
P(x<1.1) & =.74 \\
P(z<b) & =.74 \\
b & \approx .643345
\end{aligned}
$$

a)

$$
\begin{gathered}
z=\frac{x-\mu}{\sigma} \\
.643345=\frac{1.1-0.85}{\sigma} \\
.643345 \sigma=.25 \\
\sigma=.389(35 t)
\end{gathered}
$$

just use
Calculator $\rightarrow b) P(x>1)=.350$ (sst)
at this point
(10)

$$
\begin{aligned}
& P(x<108)=.3 \rightarrow P(Z<b)=.3 \quad b \approx-.5244 \\
& P(x>154)=.2 \\
\therefore & P(x<154)=.8 \rightarrow P(Z<c)=.8 \quad c \approx .8416
\end{aligned}
$$

a)

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& z \sigma=x-\mu \\
& \mu=x-z \sigma
\end{aligned}
$$

$$
\begin{aligned}
& 108+.5244 \sigma=154-.8416 \sigma \\
& 1.366 \sigma=46 \\
& \sigma \approx 33.7(3 \mathrm{sf}) \\
& \mu=108+.5244 \sigma \approx 126(35 \mathrm{f})
\end{aligned}
$$

15 m cont
(10) b)

$$
\begin{aligned}
& P(x>117)=.6 \\
& P(x<117)=.4
\end{aligned}
$$

If $\quad x \sim N\left(126,33.7^{2}\right)$
calculate
Then $P(x<117)$ should be 3947
Since, 4 is reasonably close to this value it is consistent w/ normal distribution

