1. The function f(x) is defined as $f(x) = -(x - h)^2 + k$. The diagram below shows part of the graph of f(x). The maximum point on the curve is P(3, 2).

(a) Write down the value of

(i)
$$h$$
; 3 (ii) k . 1.2

vertex form uses the vertex point

(b) Show that
$$f(x)$$
 can be written as $f(x)$

Show that
$$f(x)$$
 can be written as $f(x) = -x^2 + 6x - 7$. $f(x) = -(x-3)^2 + 2$
 $f(x) = -(x^2 - 6x + 9) + 2$

$$f(x) = -x^{2} + (x - 9 + 2)$$

$$f(x) = -x^{2} + (x - 7)$$
(1)

(2)

(2)

(c) Find
$$f'(x)$$
. $f'(x) = -2x + 6$

The point Q lies on the curve and has coordinates (4, 1). A straight line L, through Q, is perpendicular to the tangent at Q.

(d) (i) Calculate the gradient of
$$L$$
.
$$f'(4) = -2(4) + 4e$$
$$= -8 + 6$$
$$= -2 \longrightarrow L \text{ slope} = \boxed{\frac{1}{2}}$$

(iii) The line L intersects the curve again at R. Find the x-coordinate of R.

Algebraically $y - 1 = \frac{1}{2}(x - 4)$ $-x^2 + 6x - 7 = \frac{1}{2}(x - 4) + 1$ $-x^2 + 6x - 7 = \frac{1}{2}(x$

or
$$y = -x^2 + 6x - 7$$

$$0 = x^2 - 5.5 \times$$

 $X = 5.5 \pm \sqrt{5.5^2}$

$$0 = x^{2} - 5.5 \times + C$$

$$X = 5.5 \pm \sqrt{5.5^{2} - 4C} (a)$$
 (Total 13)

2. Find the equation of the normal to the curve with equation

$$y=x^3+1$$
 > perpendicular

at the point (1,2).

(Total 4 marks)

3. The function g(x) is defined for $-3 \le x \le 3$. The behaviour of g'(x) and g''(x) is given in the tables below.

x	-3 < x < -2 negative		-2	-2 < x < 1	1	1 < x < 3	Basic shape:
g'(x)			0	positive $-\frac{1}{2}$	0 ->	negative	
						×	
	x	$-3 < x < -\frac{1}{2}$ positive			$-\frac{1}{2} < x < 3$ negative		
	g''(x)			0			

Use the information above to answer the following. In each case, justify your answer.

(a) Write down the value of x for which g has a maximum.

$$\max a + x = 1$$
 (2)

(b) On which intervals is the value of g decreasing?

(c) Write down the value of x for which the graph of g has a point of inflexion.

(Total 6 marks)

4. Differentiate with respect to x:

(a)
$$(x^2 + 1)^2$$

(b)
$$e^{sinx}$$

Working:
a)
$$y = (x^{2}+1)^{2}$$

 $y' = 2(x^{2}+1)^{1}(2x)$
 $y' = 4x(x^{2}+1)$
b) $y = e^{\sin x}(\cos x)$
 $y' = (e^{\sin x})(\cos x)$
 $y' = (e^{\sin x})(\cos x)$
Answers:
(a) $4x(x^{2}+1)$
(b) $(e^{\cos x})(e^{\sin x})$

6. Let
$$g(x) = \frac{\ln x}{x^2}$$
, for $x > 0$.
$$g'(x) = \frac{(x^2)(\frac{1}{x}) - (\ln x)(2x)}{(x^2)^2}$$

$$g'(x) = \frac{\ln x}{x^2}$$

$$\frac{1 - 2\ln x}{x^3}$$

(4)

Use the quotient rule to show that $g'(x) = \frac{1 - 2 \ln x}{x^3}$.

The graph of g has a maximum point at A. Find the x-coordinate of A.

